Finger Displacement Sensing: FEM Simulation and Modelling of a Customizable Three-Layer Electrode Design

نویسندگان

  • Nan Hu
  • Paul H Chappell
چکیده

Home based or tele technological systems and smart devices have provided alternative delivery forms to promote hand rehabilitation. As a step towards the targeted system, a finite element method (FEM) simulation based on MGC3130 three-layer electrode design in Comsol®, and a nonlinear regression analysis using Matlab® were carried out. Concerning different combinations of fingers’ movement and the symmetrical structure of the simulation model, nine cases in total are simulated. In each case, there are ten testing points, ranging from 0mm to 30mm, to explore the inherent relationship between the distance changed from finger motion and the voltage signals detected in the receive electrodes. The results in both the original electrode design and the modified electrodes design agree with the quasi-static electrical near field theory and the symmetrical structure of the three-layer electrodes. Based on the simulation result, the functional relationship of the data was also investigated. The nonlinear equation, describing the performance of the electrode layers, fits well in both electrode designs, which implies a clear inverse relation between the changed distance and the detected voltage signals. The equation also reflects the sensitive and finite features of the design, which helps to guide and optimize the practical design of the electrodes in the future investigations. Keywords—finger movement detection; Comsol® simulation; capacitive sensor; electrode design; hand rehabilitation

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TiO2 based surface acoustic wave gas sensor with modified electrode dimensions for enhanced H2 sensing application

The design and optimization of nanostructure-based surface acoustic wave (SAW) gas sensor is analyzed based on TiO2 sensing layer and modified electrode dimensions. The sensitivity of the gas sensor depends upon the type of sensing layer used and active surface area obtained by varying the aspect ratio. The performance of the sensor is observed from 0.1ppm to 100ppm concentration of ...

متن کامل

A Multi-Physics Simulation Model Based on Finite Element Method for the Multi-Layer Switched Reluctance Motor

Using ANSYS finite element (FE) package, a multi-physics simulation model based on finite element method (FEM) is introduced for the multi-layer switched reluctance motor (SRM) in the present paper. The simulation model is created totally in ANSYS parametric design language (APDL) as a parametric model usable for various conventional types of this motor and it is included electromagnetic, therm...

متن کامل

Forming of Multi layer Sheet Metal by Drawing Process: an Analysis and FEM Simulation

In this paper, the drawing process of multi-layer sheet metal through wedge shaped die has been analyzed using stream function and upper bound method. Typically a sandwich sheet contains three layers of metal, where the outer layers are of the same thickness and material and different from those of the inner layer. In this study, a new deformation model has been introduced in which inlet and ou...

متن کامل

On Three-Dimensional Layered Piezoelectric Shell Elements for Design Simulation of Adaptive Structures

The paper deals with the modelling and analysis of thick piezoelectric multilayer composite shell continua applied to accurate and optimal design of adaptive (smart) structural components and systems in industrial applications. The smart composite is made of n laminae, in which each lamina can be used as either actuator, sensor, self-sensing actuator, or passive structural component. A discrete...

متن کامل

Dynamic Modelling of a Flexible Manipulator: Comparison between AMM and FEM

This paper presents the dynamic modelling of a flexible robot manipulator incorporating payload. A planar flexible manipulator incorporating structural damping, hub inertia and payload that moves in the horizontal plane is considered. A dynamic model of the system is developed using a finite element and assumed mode methods (FEM and AMM). In this work will make a comparison between FEM and AMM....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018